
Building a Spatial Audio Plugin
Allen Lee

2020/10/01

Overview

• Not a spatial audio expert!

• Recently grew interested in learning more about SA

• Created scripts to apply spatial processing offline

• Wanted something more real-time

• Also wanted to try creating a plugin…

• …and get to know JUCE better

Orbiter

Version 0 Version 0.1 Version 0.2

• 3D panner plugin

• User specifies HRTF datasets

• Made with JUCE

Overview

• Brief Introduction to Spatial Audio

• Plugin Development

Introduction to Spatial Audio

Spatial Audio

• Creating the illusion of hearing an audio source from a position in space

• Several ways to achieve this

• Surround Sound (5.1, 7.1, 22.2 surround…)

• Wave field synthesis

• Binaural reproduction

Overview

Localizing Direction of Chirp

Source: Andrew Butitta

https://commons.wikimedia.org/wiki/File:Multi_Channel_Audio_Diagram.svg

Wave Field Synthesis Surround Sound

https://commons.wikimedia.org/wiki/File:Multi_Channel_Audio_Diagram.svg

Spatial Audio

• Reproducing spatial audio through headphones

• A sound wave arrives at each ear at slightly different times and at different intensities

• Our brain processes these differences to determine where the sound came from

• ILD (Intra-aural Level Difference) and ITD (Intra-aural Time Difference)

• ILDs and ITDs are captured in Head Related Impulse Responses (HRIR)

Binaural Reproduction

Dataset used for charts are from Tohoku University RIEC HRTF Datasets

http://www.riec.tohoku.ac.jp/pub/hrtf/index.html

Audio Source positioned at 90°
Impulse reaches the left ear first
The head attenuates impulse level which arrives at
the right ear later and ‘quieter’

Recorded Audio

L R

http://www.riec.tohoku.ac.jp/pub/hrtf/index.html

Spatial Audio
Map of HRIRs for Varying Azimuths

Left Impulse Responses Right Impulse Responses Impulse Time of Arrival

θ

Azimuth Convention

Left Ear Right Ear
y

x
Dataset used for charts are from Tohoku University RIEC HRTF Datasets

http://www.riec.tohoku.ac.jp/pub/hrtf/index.html

http://www.riec.tohoku.ac.jp/pub/hrtf/index.html

Spatial Audio

• Anatomy of the outer ear (pinnae) also plays an effect in localization

• Pinnae filters out different frequencies which changes with direction

• Your brain also performs frequency analysis for localization

• Your ear’s filter characters can be seen by taking the FFT of the HRIR

• Often called the Head Related Transfer Function (HRTF)

Head Related Transfer Function

Left HRTF Right HRTF

x axis: Frequency [Hz]

y axis: Azim
uth [D

eg]

Data used for charts are from Tohoku University RIEC HRTF Datasets

http://www.riec.tohoku.ac.jp/pub/hrtf/index.html

http://www.riec.tohoku.ac.jp/pub/hrtf/index.html

Spatial Audio

• Personalized HRTFs can be measured by wearing special microphones in the ears, and
recording audio impulses from different angles

• Can also use a special dummy head microphone fitted with anatomically matching ears

• Some research in computing HRTFs from 3D scanned images of the head

HRTF Measurement

Brujel & Kjaer Head and Torso Simulator

https://commons.wikimedia.org/wiki/File:Head_and_torso_simulator.jpg

https://commons.wikimedia.org/wiki/File:Head_and_torso_simulator.jpg

Spatial Audio

• Users often report that audio with HRTFs applied seem to come from inside their head

• Need room reverberation effects to add to the realism

• Can mix reverberated signal with the binaural signal OR put the HRTF measurement

setup in a reverberant room

• HRIRs with room characteristics are called Binaural Room Impulse Responses (BRIR)

HRTF Measurement

TU Conference Room BRIR Measurement Setup

https://github.com/ShanonPearce/ASH-IR-Dataset/blob/master/Images/Rooms/Conference_Room_TU_Ilmenau.jpg

Example BRIR Measurement Setup

Spatial Audio

• HRIRs/HRTFs can be stored in a number of ways

• One way is to store the impulse data in an uncompressed audio file

• What if you wanted to store many different HRIRs from a single measurement session?

HRTF Data Storage

Aggregated FileHRIR/BRIR .wav

Storing a Single HRIR Storing Multiple HRIRs

SOFA File Format

• Spatially Oriented Format for Acoustics

• AES69-2015

• File format to store HRIRs and measurement setup information

• Based on netCDF (which is based on HDF5)

Overview

SOFA File

(θk, ϕk, rk)

Measurement Coordinates

Sampling Freq
Num Measurements

HRIR Length
Speed of Sound

…

Measurement Setup Info

x

y

Measurement Point 0

Measurement Point 1 Measurement Point 2

(θ0, ϕ0, r0)

(θ1, ϕ1, r1) (θ2, ϕ2, r2)

Measured HRIRs

(θ0, ϕ0, r0)

(θ1, ϕ1, r1)

(θ2, ϕ2, r2)

SOFA File Format
SOFA File Contents

Data.IR
[M x 2 x N]

SourcePosition
[M x C] or [I x C]

M

LIstenerPosition
[I x C] or [M x C]

HRIRs

N

C

Audio Source/Listener Locations

Number of Measurements

HRIR Length

Coordinate Triplet (always 3)

Stored as a packed 1D array of size M x 2 x N

Coordinates of audio sources or listener during the measurement process

Stored as a packed 1D array of size M x C or I x C

libBasicSOFA

• A very bare bones library to read SOFA files

• Extract HRIRs from file and place in memory

• Extract measurement setup information

Overview

SOFA File

Memory

HRIR Data

Min/Max/∆ Radius

Min/Max/∆ Theta

Min/Max/∆ Phi

Sampling Freq

Num Measurements

Num Samples

libBasicSOFA

libBasicSOFA::getHRIR()

libBasicSOFA::getMinRadius()

libBasicSOFA::getDeltaTheta()

etc

Exposed Functions

libBasicSOFA
Overview

Memory

HRIR Data

libBasicSOFA
Object

libBasicSOFA::getHRIR(channel,

 radius,

 azimuth,

 elevation)

Desired HRIR

HRIR Returned

libBasicSOFA
HRIR Location Mapping

Coordinate MapCoordinate Maps Array

ϕ0

ϕ1

ϕQ−1

θ0 θ1 θ2 θR−1

• Index of an HRIR for a given elevation and azimuth is stored in a 2D array called
the Coordinate Map

• Each radius has a Coordinate Map associated with it

Data.IR HRIR(r, ϕ, θ)

radiusMap

phiMap

thetaMap

r

ϕ
θ

Row

Column

Index

std::vector<CoordinateMap>

Orbiter Architecture

Orbiter High Level Architecture

SOFA File

libBasicSOFA
Obj

UI

Plugin Editor/
ProcessorHRTF

Processor

Input Audio
(Mono)

Orbiter Plugin

Output Audio
(Stereo)

Plugin Host

Orbiter
Applying HRTFs

• Applying HRTFs to an audio signal is essentially applying a FIR filter

• Two ways to implement the filter

z−1 z−1 z−1

a1

a0

a2

a3

Values of HRIR
For HRIR Length of N, you will need N coefficients

Time Domain Convolution

FFTx(n) y(n) x(n)

HRIR(n) FFT

+

X(ω)

HRTF(ω)

IFFT
Y(ω)

y(n)

Frequency Domain Convolution

+

Orbiter
HRTFProcessor Flow

x(n) +

X(ω)

PluginProcessor HRTFProcessor
processBlock()

Samples Add to ZP
BufferGain

Overlap and
Add

GainOutput
Buffer

FFT

IFFT

HRTF

DSP Operations

Data Storage

Signal

Orbiter
Overlap and Add

• Split a signal into N sections of size M

• Take a signal block starting at sample k and perform FFT

• Perform processing and run inverse FFT to get the time domain result

• Place processed block in an overlap and add buffer, shift by k samples and add

Signal

Block 0 Block 1 Block 2 Block 3

k

+
FFT

HRTF (ZP) Processed Result

IFFT

Orbiter
Overlap and Add

Block 0 Block 1 Block 2

y0 = IFFT(FFT(Block 0) * H)

y1 = IFFT(FFT(Block 1) * H)

y2 = IFFT(FFT(Block 2) * H)

y = y0 + y1 + y2

+

+

Overlap Regions

(Overlap and Add Buffer)

Orbiter
Implementing Overlap and Add

Processed Block 0 Processed Block 1 Processed Block 2

• Overlap and Add buffer is implemented as a circular buffer

Next Empty Block Index

Overlap and Add Buffer

Processed Block 1

Next Empty Block Index

Processed Block 2Processed Block 0

As data is written into the next empty block,
the oldest block of processed data is erased
and the next empty block index is wrapped around to the start of the buffer

Processed data from the next block will be placed in this block

Orbiter
Zero Padding

• For signal length, P and impulse response length, Q

• Processed signal is length P + Q - 1

• Therefore, FFT size should be at least this length!

P = 128

Q = 32

Applying a Simple LPF

Corruption occurs

Setting up Signals for Processing

IR

Signal

IR Zero Padded

Signal Zero Padded

(Zeros)

(Zeros)

Processed Signal

Orbiter
Changing HRTF

• Abruptly changing HRTF between processing blocks will create zipper noise

• Need to crossfade between the HRTF changes

Zipper Noise from HRTF Change

HRTF 1 HRTF 2

HRTF 1

X(ω)

HRTF 2

+

+
+

IFFT

IFFT

y(n)

Fade Out

Fade In

Time Domain Crossfading

HRTF 1 HRTF 2

Crossfaded Signal

sin2(n)

cos2(n)

Orbiter
COLA Windowing

• Changing HRTFs means that the FIR filter is time varying

• To further reduce artifacts, we need to apply windowing to the input audio

• Need to overlap windowed input audio samples (Constant Overlap and Add)

Individual Window Envelopes

Summation Result
(Constant)

Overlap and Add with Hamming Windows

Overlapping input blocks does not

affect input signal integrity*
*Except for the first and last blocks

Orbiter
COLA Windowing

Signal

Block 0

+

FFT

HRTF

To OLA Buffer

+

IFFT

Window

Signal OLA Rectangular Windowing
Hop Size of N

OLA Hamming Windowing
Hop Size of N/2

Block 1 Block 2

Orbiter
COLA Windowing Caveat
• Processing one audio block of length N only outputs N/2* usable output samples

• AudioProcessor::processBlock() expects N output samples

• Need audio input of 2N samples to output N processed samples

*Other COLA methods can output different number of usable samples

Previous Audio Block Current Audio Block

N/2 Usable Processed Audio

Orbiter
COLA Example

• AudioProcessor::processBlock() gives and requests 512 samples (N=512)

• Input block length needs to be 2N+1 = 1025 samples

Input Buffer processBlock() processBlock() processBlock()

1025 Sample Threshold

Signal Buffer
(Zero Padded) Windowed Samples

FFT(signal) and Apply Filter

OLA Buffer

Transfer and Apply Window

FFT(signal) and Apply Filter

To Output
(512 Samples)

Note that there is an initial buffering

phase that occurs when the plugin

first begins operation

Orbiter
COLA Example (Continued)

• Another block of inputs is added into the input buffer

• New batch of input data is ready to be processed

Input Buffer processBlock() processBlock() processBlock()

1025 Sample Threshold

Signal Buffer
(Zero Padded) Windowed Samples

FFT(signal) and Apply Filter

OLA Buffer

Transfer and Apply Window

FFT(signal) and Apply Filter

To Output
(512 Samples)

processBlock()

Orbiter
Adding Reverb

• Want a list of early/late reverb cues and their angle of approach

• Using this list, we can apply the appropriate gain and HRIR

• Or use a BRIR (provided the impulse response is not overly long)

• For simplicity, Orbiter uses the juce::reverb module (Freeverb)

Reverb

Apply HRTF

+Input Samples Output

HRTFProcessor

Orbiter
Final Signal Flow

PluginProcessor HRTFProcessor

Samples Input BufferGain

FFT

HRTF Overlap and
Add

GainOutput

Reverb Reverb Output
Buffer

Samples to
Process

IFFT Output
Buffer

+

+ +

Crossfader HRTF
(New)

Window

Gain

Orbiter
Implementation/SOFA Wrapper

class ReferenceCountedSOFA : public juce::ReferenceCountedObject
 {
 public:
 typedef juce::ReferenceCountedObjectPtr<ReferenceCountedSOFA> Ptr;

 ReferenceCountedSOFA(){}
 BasicSOFA::BasicSOFA *getSOFA() { return &sofa; }

 BasicSOFA::BasicSOFA sofa;
 HRTFProcessor leftHRTFProcessor;
 HRTFProcessor rightHRTFProcessor;

 size_t hrirSize;

 private:

 JUCE_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR(ReferenceCountedSOFA)
 };

• HRIRs (BasicSOFA Object) and HRTF Processors in a wrapper class,
ReferenceCountedSOFA

• Facilitates SOFA file changes during plugin runtime

SOFA file read by plugin stored in libBasicSOFA instance
HRTFProcessor instances for each ear

Orbiter
Implementation/processBlock
void OrbiterAudioProcessor::processBlock (juce::AudioBuffer<float>& buffer, juce::MidiBuffer& midiMessages)
{
 …

 if (sofaFileLoaded)
 {
 ReferenceCountedSOFA::Ptr retainedSofa(currentSOFA);

 for (int channel = 0; channel < 1; ++channel)
 {
 auto *channelData = buffer.getWritePointer (channel);

 …

 retainedSofa->leftHRTFProcessor.addSamples(channelData, buffer.getNumSamples());
 retainedSofa->rightHRTFProcessor.addSamples(channelData, buffer.getNumSamples());

 auto left = retainedSofa->leftHRTFProcessor.getOutput(buffer.getNumSamples());
 auto right = retainedSofa->rightHRTFProcessor.getOutput(buffer.getNumSamples());

 if (left.size() != 0 || right.size() != 0)
 {
 auto *outLeft = buffer.getWritePointer(0);
 auto *outRight = buffer.getWritePointer(1);

 for (auto i = 0; i < buffer.getNumSamples(); ++i)
 {
 outLeft[i] = left[i];
 outRight[i] = right[i];
 }
 …

Get active ReferenceCountedSOFA Instance

Add samples into the HRTFProcessor
Input buffer

Get processed binaural audio

Write processed binaural audio to the
AudioBuffer

Orbiter
Implementation/HRTFProcessor::addSamples
bool HRTFProcessor::addSamples(float *samples, size_t numSamples)
{
 …

 for (auto i = 0; i < numSamples; ++i)
 {
 // Add samples into the input buffer and reverb buffer
 inputBuffer[inputSampleAddIndex] = samples[i];
 reverbBuffer[reverbBufferAddIndex] = samples[i];

 inputSampleAddIndex = (inputSampleAddIndex + 1) % inputBuffer.size();
 reverbBufferAddIndex = (reverbBufferAddIndex + 1) % reverbBuffer.size();

 numSamplesAdded++;
 }

 // Execute when we have added enough samples for processing
 if (numSamplesAdded >= audioBlockSize)
 {
 numSamplesAdded -= hopSize;
 std::vector<float> x(audioBlockSize);
 auto blockStart = inputBlockStart;

 for (auto i = 0; i < audioBlockSize; ++i)
 {
 x[i] = inputBuffer[blockStart] * window[i];
 blockStart = (blockStart + 1) % inputBuffer.size();
 }

 inputBlockStart = (inputBlockStart + hopSize) % inputBuffer.size();
 calculateOutput(x);
 }
 …

Add samples into the HRTFProcessor
Input and reverb buffer

When there are a sufficient number of input samples,
transfer to signal buffer, window samples and
apply HRTFs

Orbiter
Implementation/HRTFProcessor::calculateOutput

const float* HRTFProcessor::calculateOutput(const std::vector<float> &x)
{
 …

 std::fill(olaBuffer.begin() + olaWriteIndex, olaBuffer.begin() + olaWriteIndex + hopSize, 0.0);
 olaWriteIndex = (olaWriteIndex + hopSize) % olaBuffer.size();

 std::fill(xBuffer.begin(), xBuffer.end(), std::complex<float>(0.0, 0.0));
 for (auto i = 0; i < x.size(); ++i)
 xBuffer.at(i) = std::complex<float>(x.at(i), 0.0);

 fftEngine->perform(xBuffer.data(), xBuffer.data(), false);

 for (auto i = 0; i < zeroPaddedBufferSize; ++i)
 xBuffer.at(i) = xBuffer.at(i) * activeHRTF.at(i);

 fftEngine->perform(xBuffer.data(), xBuffer.data(), true);

Remove old OLA audio data

Take FFT of input signal

Apply HRTF and get time domain output

Orbiter
Implementation/HRTFProcessor::calculateOutput

 if (hrirChanged)
 {
 juce::SpinLock::ScopedTryLockType hrirChangingScopedLock(hrirChangingLock);
 if (hrirChangingScopedLock.isLocked())
 {
 hrirChanged = false;
 crossfadeWithNewHRTF(x);

 std::copy(auxHRTFBuffer.begin(), auxHRTFBuffer.end(), activeHRTF.begin());
 }
 }

 if(!overlapAndAdd())
 return nullptr;

 // Copy outputtable audio data to the output buffer
 std::copy(olaBuffer.begin() + olaWriteIndex, olaBuffer.begin() + olaWriteIndex + hopSize, outputBuffer.begin() + outputSampleEnd);
 outputSampleEnd = (outputSampleEnd + hopSize) % outputBuffer.size();

 numOutputSamplesAvailable += hopSize;

 …

Apply crossfading if needed

Overlap and add

Transfer usable processed data to output
buffer (which is extracted via HRTFProcessor::getOutput()

Orbiter
Implementation/HRTFProcessor::getOutput

std::vector<float> HRTFProcessor::getOutput(size_t numSamples)
{
 std::vector<float> out(numSamples);
 if (numSamples > numOutputSamplesAvailable)
 return std::vector<float>(0);

 // Get reverberated input signal
 reverb.processMono(reverbBuffer.data() + reverbBufferStartIndex, (int)numSamples);

 for (auto i = 0; i < numSamples; ++i)
 {
 out[i] = outputBuffer[outputSampleStart] + (0.5f * reverbBuffer[reverbBufferStartIndex]);
 outputSampleStart = (outputSampleStart + 1) % outputBuffer.size();
 reverbBufferStartIndex = (reverbBufferStartIndex + 1) % reverbBuffer.size();
 }

 numOutputSamplesAvailable -= numSamples;

 return out;
}

Apply reverb to (non-binaural) dry input
signal

Apply binaural and reverberated signal

Orbiter
Future Improvements

• Add interpolation between HRTFs (smoother transitions)

• Better reverberation model

• More stable SOFA file support

• Headphone compensation

• Use compressed HRTF data files (SOFA files are huge!)

Questions? Comments?

E-mail me!
alee@meoworkshop.org

Twitter
@superkittens

Orbiter and libBasicSOFA Code
https://github.com/superkittens/Orbiter
https://github.com/superkittens/libBasicSOFA

https://github.com/superkittens/Orbiter
https://github.com/superkittens/libBasicSOFA

Thank you!

